Neoaves

Neoaves is a clade that consists of all modern birds (Neornithes or Aves) with the exception of Paleognathae (ratites and kin) and Galloanserae (ducks, chickens and kin).[2] Almost 95% of the roughly 10,000 known species of modern birds belong to the Neoaves.[3]

Neoavians
Temporal range: Late Cretaceous – Holocene, 69–0 Ma
PreꞒ
Ꞓ
O
S
D
C
P
T
J
K
Pg
N
[1]
Common starling (Sturnus vulgaris)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Infraclass: Neognathae
Clade: Neoaves
Sibley et al., 1988
Clades
  • Mirandornithes
  • Strisores
  • Opisthocomiformes
  • Columbimorphae
  • Otidimorphae
  • Gruiformes
  • Charadriiformes
  • Ardeae
  • Telluraves

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event,[4][5] and attempts to resolve their relationships with each other have resulted initially in much controversy.[6][7]

Phylogeny

The early diversification of the various neoavian groups occurred very rapidly around the Cretaceous–Paleogene extinction event.[8] As a result of the rapid radiation attempts to resolve their relationships have produced conflicting results, some quite controversial, especially in the earlier studies.[9][10][11] Nevertheless, some recent large phylogenomic studies of Neoaves have led to much progress on defining orders and supraordinal groups within Neoaves, even though they have failed to come to a consensus on an overall high order topology of these groups.[12][13][14][11] A genomic study of 48 taxa by Jarvis et al. (2014) divided Neoaves into two main clades, Columbea and Passerea, but an analysis of 198 taxa by Prum et al. (2015) recovered different groupings for the earliest split in Neoaves.[12][13] A reanalysis with an extended dataset by Reddy et al. (2017) suggested this was due to the type of sequence data, with coding sequences favouring the Prum topology.[14] The disagreement on topology even with large phylogenomic studies led Suh (2016) to propose a hard polytomy of nine clades as the base of Neoaves.[15] An analysis by Houde et al. (2019) recovered Columbea and a reduced hard polytomy of six clades within Passerea.[16]

Nevertheless, these studies do agree on a number of supraorderal groups, which Reddy et al. (2017) dubbed the "magnificent seven", which together with three "orphaned orders" make up Neoaves.[14] Significantly, they both include a large waterbird clade (Aequornithes) and a large landbird clade (Telluraves). The groups defined by Reddy et al. (2017) are as follows:

  • The "magnificent seven" supraordinal clades:
  1. Telluraves (landbirds)
  2. Aequornithes (waterbirds)
  3. Eurypygimorphae (sunbittern, kagu and tropicbirds)
  4. Otidimorphae (turacos, bustards and cuckoos)
  5. Strisores (nightjars, swifts, hummingbirds and allies)
  6. Columbimorphae (mesites, sandgrouse and pigeons)
  7. Mirandornithes (flamingos and grebes)
  • The three orphaned orders:
    • Opisthocomiformes (hoatzin)
    • Gruiformes (cranes and rails)
    • Charadriiformes (shorebirds, gulls and alcids)

 

Comparison of different proposals for Neoavian radiation
Jarvis et al. (2014)[2]
 
Columbea
 

Mirandornithes (flamingos, grebes)

 
 

Columbimorphae (pigeons, mesites, sandgrouse)

 
 
Passerea
 
Otidae
 

Otidimorphae (cuckoos, bustards, turacos)

 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 
 
 
 
Gruae
 

Opisthocomiformes (hoatzin)

 
Gruimorphae
 

Gruiformes (cranes, rails)

 
 

Charadriiformes (shorebirds)

 
 
 
 
 
Ardeae
 

Aequornithes (core waterbirds)

 
 

Eurypgimorphae (sunbittern, kagu, tropicbirds)

 
 
Telluraves
 

Afroaves

 
 

Australaves

 
(core landbirds)
 
 
 
 
Prum et al. (2015)[17]
 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 
 
Columbaves
 

Columbimorphae (pigeons, mesites, sandgrouse)

 
 

Otidimorphae (cuckoos, bustards, turacos)

 
 
 
 
 

Gruiformes (cranes, rails)

 
 
Aequorlitornithes
 
 

Charadriiformes (shorebirds)

 
 

Mirandornithes (flamingoes, grebes)

 
 
Ardeae
 

Aequornithes (core waterbirds)

 
 

Eurypgimorphae (sunbittern, kagu, tropicbirds)

 
 
(waterbirds)
Inopinaves
 

Opisthocomiformes (hoatzin)

 
 

Telluraves (core landbirds)

 
 
 
 
 
 
Suh (2016) — a hard polytomy[15]
 
 

Columbimorphae (pigeons, mesites, sandgrouse)

 
 

Otidimorphae (cuckoos, bustards, turacos)

 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 

Opisthocomiformes (hoatzin)

 
 

Gruiformes (cranes, rails)

 
 

Mirandornithes (flamingoes, grebes)

 
 

Charadriiformes (shorebirds)

 
 
Ardeae
 

Aequornithes (core waterbirds)

 
 

Eurypgimorphae (sunbittern, kagu, tropicbirds)

 
 
 
 
Telluraves
 

Afroaves

 
 

Australaves

 
(core landbirds)
 
 
Reddy et al. (2017)[14]
 
Columbea
 

Mirandornithes (flamingos, grebes)

 
 

Columbimorphae (pigeons, mesites, sandgrouse)

 
 
Passerea
 
 

Otidimorphae (cuckoos, bustards)*

 
 
 

Gruiformes (cranes, rails)*

 
 

Aequornithes (core waterbirds)

 
 
 
 
 
 

Charadriiformes (shorebirds)

 
 
 

Opisthocomiformes (hoatzin)

 
 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 
 

Eurypygimorphae (sunbittern, kagu, tropicbirds)

 
 

Telluraves (core landbirds)

 
 
 
 
 
 
 
 


* Turacos were recovered outside Otidimorphae as sister to Gruiformes
Houde et al. (2019) — a hard polytomy in Passerea[16]
 
Columbea
 

Mirandornithes (flamingos, grebes)

 
 

Columbimorphae (pigeons, mesites, sandgrouse)

 
 
Passerea
 
 

Otidimorphae (cuckoos, bustards, turacos)

 
 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 

Opisthocomiformes (hoatzin)

 
 

Charadriiformes (shorebirds)

 
 

Gruiformes (cranes, rails)

 
 
Ardeae
 

Eurypygimorphae (sunbittern, kagu, tropicbirds)

 
 

Aequornithes (core waterbirds)

 
 
 
 

Telluraves (core landbirds)

 
 
 
 
 
Kuhl et al. (2020)[18]
 
 

Mirandornithes (flamingos, grebes)

 
 
 
 
 
Columbaves
 

Columbimorphae (pigeons, sandgrouse, mesites; plus cuckoos)

 
 

Otidimorphae (turacos, bustards; without cuckoos)

 
 
 
 

Opisthocomiformes (hoatzin)

 
 

Strisores (hummingbirds, swifts, nightbirds)

 
 
 
 
Gruimorphae
 

Charadriiformes (shorebirds)

 
 

Gruiformes (cranes, rails)

 
 
 
 
 
 
 
Ardeae
 

Eurypygimorphae (sunbittern, kagu, tropicbirds)

 
 

Aequornithes (core waterbirds)

 
 
 
 

Telluraves (core landbirds)

 
 
 
 

The following cladogram illustrates the proposed relationships between all neoavian bird clades recovered by Kuhl, H. et al. (2020)[19]

Neoaves
 
Mirandornithes
 

Phoenicopteriformes (flamingos)

 
 

Podicipediformes (grebes)

 
 
 
 
 
 
Basal Landbirds
Gruimorphae
 

Gruiformes (rails and cranes)

 
 

Charadriiformes (waders and relatives)

 
 
 
 
 

Opisthocomiformes (hoatzin)

 
 

Caprimulgiformes (swifts, hummingbirds, nightjars and allies)

 
 
Columbaves
 
 

Otidiformes (bustards)

 
 

Musophagiformes (turacos)

 
 
 
 
 

Cuculiformes (cuckoos)

 
 

Columbiformes (pigeons)

 
 
 
 

Mesitornithiformes (mesites)

 
 

Pterocliformes (sandgrouse)

 
 
 
 
 
 
 
 
 
Ardeae
Eurypygimorphae
 

Phaethontiformes (tropicbirds)

 
 

Eurypygiformes (sunbittern and kagu)

 
 
Aequornithes
 

Gaviiformes(loons)

 
 
Austrodyptornithes
 

Procellariiformes (albatrosses and petrels)

 
 

Sphenisciformes (penguins)

 
 
 
 

Ciconiiformes (storks)

 
 
 

Suliformes (boobies, cormorants, etc.)

 
 

Pelecaniformes (pelicans, herons & ibises)

 
 
 
 
 
 
 
Telluraves
Afroaves
Accipitrimorphae
 

Cathartiformes (New World vultures)

 
 

Accipitriformes (hawks and relatives)

 
 
 
 

Strigiformes (owls)

 
Coraciimorphae
 

Coliiformes (mouse birds)

 
Cavitaves
 

Leptosomiformes (cuckoo roller)

 
Picocoraciae
 

Trogoniformes (trogons and quetzals)

 
 
 

Bucerotiformes (hornbills and relatives)

 
Picodynastornithes
 

Coraciiformes (kingfishers and relatives)

 
 

Piciformes (woodpeckers and relatives)

 
 
 
 
 
 
 
 
Australaves
 

Cariamiformes (seriemas)

 
Eufalconimorphae
 

Falconiformes (falcons)

 
Psittacopasserae
 

Psittaciformes (parrots)

 
 

Passeriformes (passerines)

 
 
 
 
 
 
 
 
 

References

  1. Van Tuinen M. (2009) Birds (Aves). In The Timetree of Life, Hedges SB, Kumar S (eds). Oxford: Oxford University Press; 409–411.
  2. Jarvis, E. D.; Mirarab, S.; Aberer, A. J.; Li, B.; Houde, P.; Li, C.; Ho, S. Y. W.; Faircloth, B. C.; Nabholz, B.; Howard, J. T.; Suh, A.; Weber, C. C.; da Fonseca, R. R.; Li, J.; Zhang, F.; Li, H.; Zhou, L.; Narula, N.; Liu, L.; Ganapathy, G.; Boussau, B.; Bayzid, M. S.; Zavidovych, V.; Subramanian, S.; Gabaldon, T.; Capella-Gutierrez, S.; Huerta-Cepas, J.; Rekepalli, B.; Munch, K.; Schierup, M.; Lindow, B.; Warren, W. C.; Ray, D.; Green, R. E.; Bruford, M. W.; Zhan, X.; Dixon, A.; Li, S.; Li, N.; Huang, Y.; Derryberry, E. P.; Bertelsen, M. F.; Sheldon, F. H.; Brumfield, R. T.; Mello, C. V.; Lovell, P. V.; Wirthlin, M.; Schneider, M. P. C.; Prosdocimi, F.; Samaniego, J. A.; Velazquez, A. M. V.; Alfaro-Nunez, A.; Campos, P. F.; Petersen, B.; Sicheritz-Ponten, T.; Pas, A.; Bailey, T.; Scofield, P.; Bunce, M.; Lambert, D. M.; Zhou, Q.; Perelman, P.; Driskell, A. C.; Shapiro, B.; Xiong, Z.; Zeng, Y.; Liu, S.; Li, Z.; Liu, B.; Wu, K.; Xiao, J.; Yinqi, X.; Zheng, Q.; Zhang, Y.; Yang, H.; Wang, J.; Smeds, L.; Rheindt, F. E.; Braun, M.; Fjeldsa, J.; Orlando, L.; Barker, F. K.; Jonsson, K. A.; Johnson, W.; Koepfli, K.-P.; O'Brien, S.; Haussler, D.; Ryder, O. A.; Rahbek, C.; Willerslev, E.; Graves, G. R.; Glenn, T. C.; McCormack, J.; Burt, D.; Ellegren, H.; Alstrom, P.; Edwards, S. V.; Stamatakis, A.; Mindell, D. P.; Cracraft, J.; Braun, E. L.; Warnow, T.; Jun, W.; Gilbert, M. T. P.; Zhang, G. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. doi:10.1126/science.1253451. ISSN 0036-8075.
  3. Ericson, Per G.P.; et al. (2006). "Diversification of Neoaves: integration of molecular sequence data and fossils" (PDF). Biology Letters. 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. PMC 1834003. PMID 17148284. Archived from the original (PDF) on 2009-03-25. Retrieved 2019-08-29.
  4. McCormack, J.E.; et al. (2013). "A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing". PLOS ONE. 8 (1): e54848. Bibcode:2013PLoSO...854848M. doi:10.1371/journal.pone.0054848. PMC 3558522. PMID 23382987.
  5. Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  6. Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  7. Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  8. Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  9. Mayr, G (2011). "Metaves, Mirandornithes, Strisores and other novelties - a critical review of the higher-level phylogeny of neornithine birds". J Zool Syst Evol Res. 49: 58–76. doi:10.1111/j.1439-0469.2010.00586.x.
  10. Matzke, A. et al. (2012) Retroposon insertion patterns of neoavian birds: strong evidence for an extensive incomplete lineage sorting era Mol. Biol. Evol.
  11. Braun, Edward L.; Cracraft, Joel; Houde, Peter (2019). "Resolving the Avian Tree of Life from Top to Bottom: The Promise and Potential Boundaries of the Phylogenomic Era". Avian Genomics in Ecology and Evolution. pp. 151–210. doi:10.1007/978-3-030-16477-5_6. ISBN 978-3-030-16476-8.
  12. Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC 4405904. PMID 25504713.
  13. Prum, Richard O.; Berv, Jacob S.; Dornburg, Alex; Field, Daniel J.; Townsend, Jeffrey P.; Lemmon, Emily Moriarty; Lemmon, Alan R. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526 (7574): 569–573. doi:10.1038/nature15697. ISSN 0028-0836. PMID 26444237.
  14. Reddy, Sushma; Kimball, Rebecca T.; Pandey, Akanksha; Hosner, Peter A.; Braun, Michael J.; Hackett, Shannon J.; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Kingston, Sarah; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Witt, Christopher C.; Yuri, Tamaki; Braun, Edward L. (2017). "Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling". Systematic Biology. 66 (5): 857–879. doi:10.1093/sysbio/syx041. ISSN 1063-5157. PMID 28369655.
  15. Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi:10.1111/zsc.12213. ISSN 0300-3256.
  16. Houde, Peter; Braun, Edward L.; Narula, Nitish; Minjares, Uriel; Mirarab, Siavash (2019). "Phylogenetic Signal of Indels and the Neoavian Radiation". Diversity. 11 (7): 108. doi:10.3390/d11070108. ISSN 1424-2818.
  17. Prum, R.O.; et al. (2015). "A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing". Nature. 526: 569–573. doi:10.1038/nature15697. PMID 26444237.
  18. Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2020). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution: 143. doi:10.1093/molbev/msaa191.
  19. H Kuhl, C Frankl-Vilches, A Bakker, G Mayr, G Nikolaus, S T Boerno, S Klages, B Timmermann, M Gahr (2020) An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msaa191
Taxon identifiers
  • Wikidata: Q2330918
  • EoL: 3014698
  • Fossilworks: 98887
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.